Rossby Wave Propagation and Teleconnection Patterns in the Austral Winter

Abstract
Observational evidence of and theoretical support for the Northern and Southern Hemisphere teleconnection patterns in the austral (Southern Hemisphere) winter are examined through an upper troposphere streamfunction teleconnectivity map and time-lag cross-correlation analysis using ECMWF initialized analysis 2OO-hPa winds for the 11 June–August periods from 1979 to 1989. As was previously found for the Northern Hemisphere winter, the regions of strong teleconnectivity, particularly in the winter hemisphere, tend to he oriented in the zonal direction and coincide with the location of the major jet streams. Although equatorward propagation from the Northern and Southern Hemispheres is observed, little evidence of cross-equatorial propagation has been found. For comparison, the response of a barotropic model, linearized about a climatological 300-hPa June–August time-mean flow to localized forcing is determined. It is found that the activity tends to be trapped inside each of the Southern Hemisphere... Abstract Observational evidence of and theoretical support for the Northern and Southern Hemisphere teleconnection patterns in the austral (Southern Hemisphere) winter are examined through an upper troposphere streamfunction teleconnectivity map and time-lag cross-correlation analysis using ECMWF initialized analysis 2OO-hPa winds for the 11 June–August periods from 1979 to 1989. As was previously found for the Northern Hemisphere winter, the regions of strong teleconnectivity, particularly in the winter hemisphere, tend to he oriented in the zonal direction and coincide with the location of the major jet streams. Although equatorward propagation from the Northern and Southern Hemispheres is observed, little evidence of cross-equatorial propagation has been found. For comparison, the response of a barotropic model, linearized about a climatological 300-hPa June–August time-mean flow to localized forcing is determined. It is found that the activity tends to be trapped inside each of the Southern Hemisphere...