Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation

Abstract
We used a potent inhibitor of glucosylceramide synthase to test whether substrate deprivation could lower globotriaosylceramide levels in α-galactosidase A (α-gal A) knockout mice, a model of Fabry disease. C57BL/6 mice treated twice daily for 3 days with D-threo-1-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidino-propanol (D-t-EtDO-P4) showed a concentration-dependent decrement in glucosylceramide levels in kidney, liver, and spleen. A single intraperitoneal injection of D-t-EtDO-P4 resulted in a 55% reduction in renal glucosylceramide, consistent with rapid renal glucosylceramide metabolism. A concentration-dependent decrement in renal and hepatic globotriaosylceramide levels was observed in α-Gal A males treated for 4 weeks with D-t-EtDO-P4. When 8-week-old α-Gal A males were treated for 8 weeks with 10 mg/kg twice daily, renal globotriaosylceramide fell to below starting levels, consistent with an α-galactosidase A–independent salvage pathway for globotriaosylceramide degradation. Complications observed with another glucosylceramide synthase inhibitor, N-butyldeoxynojirimycin, including weight loss and acellularity of lymphatic organs, were not observed with D-t-EtDO-P4. These data suggest that Fabry disease may be amenable to substrate deprivation therapy.