Theory of Thermal Conductivity inYBa2Cu3O7δ

Abstract
We calculate the electronic thermal conductivity in a d-wave superconductor, including both the effect of impurity scattering and inelastic scattering by antiferromagnetic spin fluctuations. We analyze existing experiments, particularly with regard to the question of the relative importance of electronic and phononic contributions to the heat current, and to the influence of disorder on low-temperature properties. We find that phonons dominate heat transport near T_c, but that electrons are responsible for most of the peak observed in clean samples, in agreement with a recent analysis of Krishana et al. In agreement with recent data on YBa_2(Cu_1-xZn_x)_3O_7-\delta the peak position is found to vary nonmonotonically with disorder.