Abstract
Monoclonal IgG1 (immunoglobulin G1) PA2.1 and MA2.1 antibodies recognize polymorphic sites of the human transplantation antigen HLA-A2. They are distinguishable because MA2.1 binds HLA-A2 and HLA-B17, whereas PA2.1 binds HLA-A2 and HLA-A28. The affinities of PA2.1-Fab for HLA-A2, three HLA-A2 variants and HLA-A28 are similar and relatively low (1.9 × 10(7) M-1). The affinities of MA2.1-Fab for HLA-A2, three HLA-A2 variants and HLA-B17 are similar and high (1.2 × 10(9) M-1). The difference in affinity is due to the rates of dissociation, which give half-times of dissociation of 290 min for MA2.1-Fab and 4 min for PA2.1-Fab. For both Fab, equilibrium measurements and kinetic determinations gave consistent estimates for affinity. When PA2.1-F(ab)2 or IgG is incubated with cells it reaches equilibrium within 3 h, with most molecules bound bivalently to the cell. Under similar conditions, MA2.1-F(ab)2 does not reach equilibrium and a significant proportion of molecules bound with one and two sites are found. For the lower-affinity antibody (PA2.1), estimates of the binding constants for one- and two-site interactions could be made. By simple Scatchard analysis the avidity of F(ab)2 or IgG is 1.3 × 10(9) M-1, giving an enhancement factor of 68 between bivalent and univalent binding. This is a measure of the equilibrium constant for the interchange between bivalent and univalent binding. Analysis of the results with more realistic models indicates that the actual value is larger (10(3)-10(4) M-1) than 68 M-1. The avidities of F(ab)2 and IgG for HLA-A2 are identical, showing the Fc does not interfere with bivalent binding to cells.