Fractional-Diffusion Solutions for Transient Local Temperature and Heat Flux
- 9 December 1999
- journal article
- research article
- Published by ASME International in Journal of Heat Transfer
- Vol. 122 (2), 372-376
- https://doi.org/10.1115/1.521474
Abstract
Applying properties of the Laplace transform, the transient heat diffusion equation can be transformed into a fractional (extraordinary) differential equation. This equation can then be modified, using the Fourier Law, into a unique expression relating the local value of the time-varying temperature (or heat flux) and the corresponding transient heat flux (or temperature). We demonstrate that the transformation into a fractional equation requires the assumption of unidirectional heat transport through a semi-infinite domain. Even considering this limitation, the transformed equation leads to a very simple relation between local time-varying temperature and heat flux. When applied along the boundary of the domain, the analytical expression determines the local time-variation of surface temperature (or heat flux) without having to solve the diffusion equation within the entire domain. The simplicity of the solution procedure, together with some introductory concepts of fractional derivatives, is highlighted considering some transient heat transfer problems with known analytical solutions. [S0022-1481(00)01002-1]Keywords
This publication has 2 references indexed in Scilit:
- A general solution of the diffusion equation for semiinfinite geometriesJournal of Mathematical Analysis and Applications, 1972
- L'intégrale de Riemann-Liouville et le problème de CauchyActa Mathematica, 1949