Redistribution of Gaseous Phase of Liquid Metal Two-Phase Flow in a Strong Magnetic Field

Abstract
In the previous paper, the authors pointed out the motion of bubble or gaseous phase in the direction to the both side walls due to the pinch effect caused by the induced magnetic field in the liquid metal two-phase flow under the strong magnetic field. In the present paper, to clarify the existence of the pinch effect experimentally, an experimental study was performed. Firstly the distributions of the void fraction in the cross section perpendicular to the flow were measured at three locations in the flow direction for the various strength of the applied magnetic field. Secondly a magnetic field was superposed on the induced magnetic field by the outer coil to disturb the pinch effect by the cancel of the induced magnetic field with the superposed one, resulting in the evident redistribution of the void-fraction profile obtained above. From these experiments it is concluded that the pinch effect will play an important role to redistribute the bubble or gaseous phase in the liquid metal two-phase flow under the strong magnetic field and that the effect is more promoted with increasing magnetic interaction number defined as a ratio of the electromagnetic force to the inertia of the fluid.