Differences in Smad4 Expression in Human Papillomavirus Type 16–Positive and Human Papillomavirus Type 16–Negative Head and Neck Squamous Cell Carcinoma

Abstract
The SMADs are a group of interrelated proteins that mediate transforming growth factor β (TGF-β) signaling. Upon TGF-β binding the TGF-β type I receptor phosphorylates Smad2 and Smad3, which then complex with Smad4 and translocate to the nucleus, with subsequent activation of target genes. Disruption of TGF-β signaling is thought to contribute to the development of head and neck squamous cell carcinomas (HNSCC). Alterations in the function of the DPC4/Smad4 tumor suppressor gene have been found to inactivate TGF-β signaling in several tumor types. For example, DPC4/Smad4 is lost or mutated in colorectal, pancreatic, and esophageal cancers. In addition, DPC4/Smad4 transcriptional activity and TGF-β ability to inhibit DNA synthesis is blocked by the E7 protein of the human papillomavirus type 16 (HPV16) in cervical carcinoma cell lines. HPV16 infection is a risk factor for the development of a subset of HNSCC. This study was undertaken to investigate a potential correlation between expression of components of the TGF-β signaling pathway and HPV16 status in HNSCC tumors. We examined the expression of TGF-β signaling proteins Smad2, Smad2-P, and Smad4 by immunohistochemistry in 27 HPV16-negative and 16 HPV16-positive HNSCCs. We compared the expression patterns and assessed their relationship to HPV16 status. No significant differences were detected between HPV16-positive and HPV16-negative tumors in the expression of Smad2 and Smad2-P. Smad4 expression, however, was decreased in 56% of the HPV16-positive tumors and in 39% of HPV16-negative tumors. This difference was statistically significant (P = 0.01) suggesting that loss of Smad4 expression may be involved in HPV16-induced carcinogenesis of HNSCC.