Diamagnetic shifts of excitons associated with symmetric and antisymmetric wave functions in coupled InxGa1−xAs-GaAs quantum wells

Abstract
Magneto‐optical data obtained from photoluminescence and photoluminescence excitation measurements performed in the presence of applied magnetic fields were used to determine the diamagnetic shifts of free excitons. The samples studied were coupled InxGa1−xAs–GaAs quantum wells. In all cases the excitons associated with antisymmetric wave functions were found to have larger diamagnetic shifts than the excitons associated with symmetric wave functions. This suggests that the excitons associated with antisymmetric wave functions have a smaller binding energy than excitons associated with symmetric wave functions. These properties are consistent with the fact that excitons associated with antisymmetric wave functions are less confined than excitons associated with the symmetric wave functions.