Noninvasive Measurement of Viable Cell Number in Tissue-Engineered Constructs in Vitro, Using 1H Nuclear Magnetic Resonance Spectroscopy

Abstract
Noninvasive monitoring of tissue-engineered constructs is of critical importance for accurate characterization of constructs and their remodeling in vitro and in vivo. This study investigated the utility of (1)H NMR spectroscopy to noninvasively quantify viable cell number in tissue-engineered substitutes in vitro. Agarose disk-shaped constructs containing betaTC3 cells were employed as the model tissue-engineered system. Two construct prototypes containing different initial cell numbers were monitored by localized, water-suppressed 1H NMR spectroscopy over the course of 13 days. (1)H NMR measurements of the total choline resonance at 3.2 ppm were compared with results from the traditional cell viability assay MTT and with insulin secretion rates. Results show a strong linear correlation between total choline and MTT (R (2) = 0.86), and between total choline and insulin secretion rate (R (2) = 0.90). Overall, this study found noninvasive measurement of total choline to be an accurate and nondestructive assay for monitoring viable betaTC3 cell numbers in tissue-engineered constructs. The applicability of this method to in vivo monitoring is also discussed.