Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP−TiO2 Composites

Abstract
InP quantum rods were synthesized via the reaction of monodispersed colloidal indium droplets with phosphide ions. In(0) droplets, which do not act as a catalyst but rather a reactant, are completely consumed. The excess electrons that are produced in this reaction are most likely transferred to an oxide layer at the indium surface. For the synthesis of InP quantum rods with a narrow size distribution, a narrow size distribution of In(0) particles is also required because each indium droplet serves as a template to strictly limit the lateral growth of individual InP nanocrystals. Free-standing quantum rods, 60, 120, or 150 A in diameter, with aspect ratios of 1.6-3.5, and without the residual metallic catalyst at the rod tip, were synthesized from the diluted transparent solution of metallic indium particles. The same approach was used to synthesize InAs quantum rods. A photoactive InP-TiO(2) composite was also prepared by the same chemical procedure; InP nanocrystals grow as well-defined spherical or slightly elongated shapes on the TiO(2) surface.