Abstract
Lomefloxacin (SC-47111; NY-198) is a new difluoroquinolone agent. It inhibited 90% of Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter spp., Proteus mirabilis, Morganella morganii, Proteus vulgaris, Serratia marcescens, Salmonella spp., Shigella spp., Aeromonas spp., Yersinia spp., Haemophilus influenzae, and Neisseria gonorrhoeae at .ltoreq. 2 .mu.g/ml. Lomefloxacin inhibited 90% of Pseudomonas aeruginosa at 4 .mu.g/ml. Lomefloxacin was equal in activity to norfloxacin against Escherichia coli, Klebsiella spp., Enterobacter spp., Haemophilus influenzae, and Neisseria gonorrhoeae but was twofold less active against Proteus spp., Providencia spp., Serratia marcescens, Salmonella spp., and Shigella spp. Ofloxacin was generally 2- to 4-fold more active, and ciprofloxacin was 4- to 16-fold more active. Lomefloxacin inhibited Staphylococcus aureus, including methicillin-resistant isolates, but MICs for 90% of streptococcal species tested were 8 .mu.g/ml. In the presence of 9 mM Mg2+, MICs for Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa were increased, as they were when they were tested in urine. A single-step increase in resistance to eightfold above the MIC occurred at a frequency of < 10-10, but serial transfer of bacteria in the presence of the agent produced MIC increases. Lomefloxacin had activity and properties comparable to those of many of the new quinolones.