Influence of thrombus components in mediatingstaphylococcus aureus adhesion to polyurethane surfaces

Abstract
The role of protein and cellular components of thrombi in mediating bacterial adhesion on artificial surfaces was investigated in this study. The attachment of Staphylococcus aureus on polyurethane surfaces was observed directly using an automated video microscopy system. Surfaces were preconditioned with components of platelet–fibrin thrombi, including fibrinogen, thrombin, plasma, and isolated platelets. Experiments were performed in a radial flow chamber, and attachment rate constants were compared on the preconditioned surfaces in an effort to understand the complex relationship that exists between bacterial infection and thrombosis on synthetic biomaterials. Preadsorption of fibrinogen to surfaces significantly increased S. aureus adhesion compared to those preadsorbed with albumin alone while the presence of fibrin dramatically increased bacterial attachment compared to plasma preadsorbed surfaces. While the presence of adherent platelets also increased bacterial attachment, fibrin appeared to play a larger role in mediating bacterial adhesion on polyurethane surfaces. Striking results were obtained on the zwitterionic phosphonated polyurethane for a number of pretreatment conditions with regard to decreased bacterial adhesion and fibrinogen deposition. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 660–670, 1998.