Abstract
Voltage-activated currents were studied in whole-cell patch-clamped rat neocortical neurons growing in culture and treated with tunicamycin (TU), an inhibitor of protein N-glycosylation. The size of the Na+ current decreased progressively in the presence of TU (1-2 .mu.M). This decrease was faster in growing 5-14 day-old neurons (to ca. 40% of control after 24 hours of treatment) than in fully grown 20-40-day-old neurons (to ca 40% of control after 68 hours of treatment). The fast transient K+ current (A-current) was abolished, and the delayed rectifier K+ current was markedly reduced by a 24 hour treatment with TU (1-2 .mu.M) in growing neurons. In contrast, in fully grown neurons these currents were unaffected by the same TU treatment. The size of the Ca2+ current was significantly reduced following a 24 hour treatment with TU (1-2 .mu.M) in neurons at early stages of differentiation, but remained stable in 20-40-day-old neurons. It is concluded that protein glycosylation, presumably of the channel proteins themselves, is important for the functional expression of voltage-activated channels in embryonic cortical neurons during the early stages of cell growth in culture; the channels become less dependent on glycosylation in mature neurons.