Comparison of Nanogel Drug Carriers and their Formulations with Nucleoside 5′-Triphosphates
- 2 May 2006
- journal article
- research article
- Published by Springer Nature in Pharmaceutical Research
- Vol. 23 (5), 920-930
- https://doi.org/10.1007/s11095-006-9788-5
Abstract
Purpose The aim of the study is to synthesize and characterize nanogel carriers composed of amphiphilic polymers and cationic polyethylenimine for encapsulation and delivery of cytotoxic nucleoside analogs 5′-triphosphates (NTPs) into cancer cells. Methods Nanogels were synthesized by a novel micellar approach and compared with carriers prepared by the emulsification/evaporation method. Complexes of nanogels with NTP were prepared; particle size and in vitro drug release were characterized. Resistance of the nanogel-encapsulated NTP to enzymatic hydrolysis was analyzed by ion-pair high-performance liquid chromatography. Binding to isolated cellular membranes, cellular accumulation and cytotoxicity were compared using breast carcinoma cell lines CL-66, MCF-7, and MDA-MB-231. In vivo biodistribution of the 3H-labeled NTP encapsulated in different types of nanogels was evaluated in comparison to the injected NTP alone. Results Nanogels with a particle size of 100–300 nm in the unloaded form and less than 140 nm in the NTP-loaded form were prepared. An in vitro release of NTP was >50% during the first 24 h. Nanogel formulations ensured increased NTP drug stability against enzymatic hydrolysis as compared to the drug alone. Pluronic®-based nanogels NG(F68), NG(F127), NG(P85), and NGM(P123) demonstrated 2–2.5 times enhanced interaction with cellular membranes and association with various cancer cells compared to NG(PEG). Among them, NG(F68) and NG(F127) exhibited the lowest cytotoxicity. Injection of nanogel-formulated NTP significantly modulated the drug accumulation in different mouse organs. Conclusions Nanogels composed of Pluronic® F68 and P123 were shown to display certain advanced properties compared to NG(PEG) as a drug delivery system for NTP analogs. Formulations of nucleoside analogs in active NTP form with these nanogels will improve the delivery of these cytotoxic drugs to cancer cells and the therapeutic potential of this anticancer chemotherapy.Keywords
This publication has 28 references indexed in Scilit:
- Cross-Linked Polymeric Nanogel Formulations of 5‘-Triphosphates of Nucleoside Analogues: Role of the Cellular Membrane in Drug ReleaseMolecular Pharmaceutics, 2005
- Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetateJournal of Pharmacy and Pharmacology, 2004
- Adhesion of Polyether-Modified Poly(acrylic acid) to MucinLangmuir, 2004
- Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogelsInternational Journal of Pharmaceutics, 2004
- Hydrogels for oral delivery of therapeutic proteinsExpert Opinion on Biological Therapy, 2004
- Nanogels for Oligonucleotide Delivery to the BrainBioconjugate Chemistry, 2003
- The dawning era of polymer therapeuticsNature Reviews Drug Discovery, 2003
- Long-Term Exposure to Zidovudine Affectsin Vitroandin Vivothe Efficiency of Phosphorylation of Thymidine KinaseAIDS Research and Human Retroviruses, 1996
- Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivativesInternational Journal of Clinical Pharmacy, 1994
- Treatment of intravenously implanted lewis lung carcinoma with liposome-encapsulated cytosine arabinoside and non-specific immunotherapyInternational Journal of Cancer, 1984