Abstract
An approximate quasi-static theoretical analysis is presented for the behavior of punch-impact-loaded metal plates. Based on the principle of virtual work, load-deflection relationships are first obtained and then used to predict the energy-absorbing capabilities of plates subjected to low-velocity impacts that cause perforation. It is demonstrated that the theoretical predictions are in good agreement with experimental observations on fully clamped steel plates when material strain rate sensitivity is taken into consideration and provided that perforation does not occur by adiabatic shear plugging.

This publication has 18 references indexed in Scilit: