Light propagation in graded-index optical fibers

Abstract
An accurate numerical method is described for solving the Helmholtz equation for a general class of optical fibers. The method yields detailed information about the spatial and angular properties of the propagating beam as well as the modal propagation constants for the fiber. The method is applied to a practical graded-index fiber under the assumptions of both coherent and incoherent illumination. A spectral analysis of the calculated field shows that leaky modes are lost and steady-state propagating conditions are established over a propagation distance of a fraction of a meter.