Abstract
Formation and fragmentation of metal–metal bonds on the way between stable metal compounds in which the metal atoms are oxidised (e.g. isolated species in solution or metal salts in bulk) and the bulk metal are the fundamental steps to understand this process in which formation and chemical behaviour of metalloid Al and Ga clusters as intermediates are essential. Many examples of metalloid Al and Ga clusters show that their formation reflects a high degree of complexity like that of the simple seeming formation of the bulk metal itself: starting from metastable Al(I) and Ga(I) solutions containing small molecular entities, metalloid clusters grow during many self-organization steps including aggregation as well as irreversible redox cascades. This novel class of clusters seems to open a new dimension in chemistry between the molecular and the solid-state area, because, for the first time, it is shown that under well selected conditions definite molecular species, i.e. metalloid clusters, grow via the formation of additional metal–metal bonds and that the solid metal represents the final step.