Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films

Abstract
We report on a direct measurement of two-dimensional potential distribution on the surface of photovoltaic Cu(In,Ga)Se2 thin films using a nanoscale electrical characterization of scanning Kelvin probe microscopy. The potential measurement reveals a higher surface potential or a smaller work function on grain boundaries of the film than on the grain surfaces. This demonstrates the existence of a local built-in potential on grain boundaries, and the grain boundary is positively charged. The local built-in potential on the grain boundary is expected to increase the minority-carrier collection area from one to three dimensional. In addition, a work function decrease induced by Na on the film surface was observed.