The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana

Abstract
Phenylpropanoid derivatives are a complex class of secondary metabolites that have many important roles in plants during normal growth and in responses to environmental stress. Phenylalanine ammonialyase (PAL) catalyzes the first step in the biosynthesis of phenylpropanoids, and is usually encoded by a multi-gene family. Genomic clones for three Arabidopsis thaliana PAL genes containing the entire protein-coding region and upstream and downstream sequences have been obtained and completely sequenced. Two A. thaliana PAL genes (PAL1 and PAL2) are structurally similar to PAL genes that have been cloned from other plant species, with a single intron at a conserved position, and a long highly conserved second exon. Previously identified promoter motifs plus several additional sequence motifs were found in the promoter regions of PAL1 and PAL2. Expression of PAL1 and PAL2 is both qualitatively and quantitatively similar in different plant organs and under various inductive conditions. A third A. thaliana PAL gene, PAL3, differs significantly from PAL1 and PAL2 and other sequenced plant PAL genes. PAL3 contains an additional intron, and its deduced amino acid sequence is less homologous to other PAL proteins. The PAL3 promoter region lacks several sequence motifs conserved between A. thaliana PAL1 and PAL2, as well as motifs described in other genes involved in phenylpropanoid metabolism. A. thaliana PAL3 was expressed at very low levels under the conditions examined.