Abstract
Patterns of chondrichthyan reproduction and development are diverse. Species either are reproductively active throughout the year, or have a poorly defined annual cycle with one or two peaks of activity, or have a well defined annual or biennial cycle. Based on embryological origin and adult morphology, their reproductive system is more similar to tetrapods than to teleosts. Primordial germ cells are of endodermal origin. The Wolffian ducts in males and Mullerian ducts in females become the functional urogenital ducts. Differentiation is under hormonal control. Unusual features of the reproductive system include an epigonal organ in males and females. It contains lymphoid and hemopoietic tissue. Leydig's gland, a modified region of the kidney, produces seminal fluid. In some species, sperm passing through the vas deferens, is enclosed in spermatophores. Rotating about their long axis, helical spermatozoa can move forward or reverse direction. Spermatogenesis often occurs in bicellular units, spermatocysts. These consist of a spermatogonium enclosed in a Sertoh cell. Fertilization is internal. Claspers, modified portions of the pelvic fins act as intromittent organs. In many viviparous sharks and rays, the female reproductive system is asymmetrical. Eggs of some sharks are the largest known cells. Yolk platelets contain lipovitellin. Oocytes have lampbrush chromosomes. Eggs released from the ovary into the body cavity are transported by ciliary action to the ostium of the oviduct. There they are fertilized. Physiological polyspermy is normal. The shell gland, a specialized region of the anterior oviduct, functions both in long term sperm storage and in egg case production. Egg cases of sharks and skates consist of unique collagenous protein with a 400 Å period, organized as a cholesteric liquid crystal. Chimaeroid egg cases contain 550 Å pseudotubules in orthogonal lattices. In small sharks, males copulate by coiling around the female. A parallel position is assumed by large sharks. Skates and rays copulate with ventral surfaces apposed or by a dorsal approach. Biting is a pre-copulatory release mechanism. Parental care, except for selective oviposition, is lacking. Heavily yolked eggs undergo meroblastic, discoidal cleavage. Development is lengthy, shortest (2–4 months) in rays, longer in skates (3–8 months) and longest (9–22 months) in sharks and chimaeras. Most sharks and all rays are viviparous. Chimaeras, skates, and some sharks are oviparous. Viviparity either involves a yolk sac placenta or is aplacental. If aplacental, the embryo derives nutrients either from yolk reserves, or by intra-uterine embryonic cannibalism, or from placental analogues which secrete “uterine milk.” Phylogenetic position, geographical distribution, benthic vs. pelagic habitat, adult size, egg-embryo size, feeding ecology, and embryonic osmoregulation are factors in the retention of oviparity or the evolution of viviparity.