Active Digital Microfluidic Paper Chips with Inkjet‐Printed Patterned Electrodes

Abstract
Active, paper-based, microfluidic chips driven by electrowetting are fabricated and demonstrated for reagent transport and mixing. Instead of using the passive capillary force on the pulp to actuate a flow of a liquid, a group of digital drops are transported along programmed trajectories above the electrodes printed on low-cost paper, which should allow point-of-care production and diagnostic activities in the future.