Ischemia‐reperfusion selectively impairs nitric oxide‐ mediated dilation in coronary arterioles: counteracting role of arginase
Open Access
- 2 October 2003
- journal article
- research article
- Published by Wiley in The FASEB Journal
- Vol. 17 (15), 2328-2330
- https://doi.org/10.1096/fj.03-0115fje
Abstract
A reduction in L-arginine availability has been implicated in the impairment of endothelium- dependent nitric oxide (NO)-mediated vasodilation by ischemia-reperfusion (I/R). However, the mechanisms contributing to dysregulation of the L-arginine pool remain unknown. Because endothelial cells can metabolize L-arginine via two major enzymes, that is, NO synthase (NOS) and arginase, we hypothesized that up-regulation of arginase during I/R reduces L-arginine availability to NOS and thus impairs NO-mediated vasodilation. To test this hypothesis, a local I/R was produced in the porcine heart by occlusion of a small branch of left anterior descending artery for 30 min, followed by reperfusion for 90 min. Arterioles (60−110 µm) isolated from non-ischemic and ischemic regions of subepicardium were cannulated and pressurized without flow for in vitro study. Vessels from both regions developed similar levels of basal tone. Although the dilation of I/R vessels to endothelium-independent agonist sodium nitroprusside was not altered, the endothelium-dependent NO-mediated dilations to adenosine and serotonin were attenuated. I/R not only inhibited arteriolar production of NO but also increased arteriolar arginase activity. Arginase inhibitor α-difluoromethylornithine enhanced NO production/dilation in normal vessels and also restored the NO-mediated function in I/R vessels. Treating I/R vessels with L-arginine also restored vasodilations. Immunohistochemical data revealed that I/R up- regulated arginase but down-regulated NOS expression in the arteriolar endothelium. Pretreating the animals with protein synthesis inhibitor cycloheximide prevented I/R-induced arginase up- regulation and also preserved NO-mediated vascular function. These results suggest that one mechanism by which I/R inhibits NO-mediated arteriolar dilation is through increased arginase activity, which limits the availability of L-arginine to NOS for NO production. In addition, the inability of arginase blockade or L-arginine supplementation to completely restore vasodilatory function may be attributable to the down-regulation of endothelial NOS expression.Keywords
Funding Information
- National Heart, Lung, and Blood Institute (HL-55524, HL-48179, K02HL03693)
This publication has 45 references indexed in Scilit:
- Arginase in patients with breast cancerClinica Chimica Acta; International Journal of Clinical Chemistry, 2003
- Oxidative Stress and Its Role in Skin DiseaseAntioxidants and Redox Signaling, 2002
- Enhanced Expression of Angiotensin II Type 2 Receptor, Inositol 1,4,5-Trisphosphate Receptor, and Protein Kinase Cε During Cardioprotection Induced by Angiotensin II Type 2 Receptor BlockadeHypertension, 2000
- Expression of nitric oxide synthase isoforms and arginase in normal human skin and chronic venous leg ulcersThe Journal of Pathology, 2000
- Recognition of α-Amino Acids Bearing Various CNOH Functions by Nitric Oxide Synthase and Arginase Involves Very Different Structural DeterminantsBiochemistry, 2000
- Resident Cardiac Mast Cells Degranulate and Release Preformed TNF-α, Initiating the Cytokine Cascade in Experimental Canine Myocardial Ischemia/ReperfusionCirculation, 1998
- Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia.Circulation, 1994
- Coronary reperfusion in dogs inhibits endothelium-dependent relaxation: Role of superoxide radicalsFree Radical Biology & Medicine, 1990
- Coronary Vascular Reactivity After Acute Myocardial IschemiaScience, 1982
- EFFECTS OF PROTEIN SYNTHESIS INHIBITORS ON ANGIOTENSIN-STIMULATED AND ANGIOTENSIN-INHIBITED FLUID TRANSPORT BY RAT JEJUNUM IN VIVOJournal of Endocrinology, 1977