Synthesis and Properties of 3-(2-Hydroxyethyl)-3-n-pentyldiazirine, a Photoactivable General Anesthetic

Abstract
To overcome the difficulties of locating the molecular sites of general anesthetic action, we synthesized a novel photoactivable general anesthetic, 3-(2-hydroxyethyl)-3-n-pentyldiazirine (3-diazirinyloctanol), which anesthetized tadpoles with an ED(50) of 160 microM. Subanesthetic concentrations of 3-diazirinyloctanol enhanced GABA-induced currents in GABA(A) receptors, an effect that has been implicated in general anesthetic action. It also enhanced [(3)H]muscimol binding to this receptor. In muscle nicotinic acetylcholine receptors (nAcChoR), it inhibited the response to acetylcholine with an IC(50) of 33 microM. 3-Diazirinyloctanol's pharmacological actions were comparable to those of octanol. 3-(2-Hydroxyethyl)-3-[4,5-(3)H(2)]-n-pentyldiazirine photoincorporated into Torpedo nAcChoR-rich membranes mainly in the alpha subunit with 70% being in a proteolytic fragment containing the M4 transmembrane segment. Agonist enhanced the photolabeling 10-fold in a fragment containing the M1, M2, and M3 transmembrane segments. Thus, 3-diazirinyloctanol is a novel general anesthetic that acts on, and can be photoincorporated into, postsynaptic receptors.