Signatures of electron correlations in the transport properties of quantum dots

Abstract
The transition matrix elements between the correlated N and N+1 electron states of a quantum dot are calculated by numerical diagonalization. They are the central ingredient for the linear and nonlinear transport properties, which we compute using a rate equation. The experimentally observed variations in the heights of the linear conductance peaks can be explained. The knowledge of the matrix elements as well as the stationary populations of the states allows us to assign the features observed in the nonlinear transport spectroscopy to certain transitions and contains valuable information about the correlated electron states.
All Related Versions