Biochemistry and Comparative Genomics of SxxK Superfamily Acyltransferases Offer a Clue to the Mycobacterial Paradox: Presence of Penicillin-Susceptible Target Proteins versus Lack of Efficiency of Penicillin as Therapeutic Agent
Open Access
- 1 December 2002
- journal article
- review article
- Published by American Society for Microbiology in Microbiology and Molecular Biology Reviews
- Vol. 66 (4), 702-738
- https://doi.org/10.1128/mmbr.66.4.702-738.2002
Abstract
The bacterial acyltransferases of the SxxK superfamily vary enormously in sequence and function, with conservation of particular amino acid groups and all-α and α/β folds. They occur as independent entities (free-standing polypeptides) and as modules linked to other polypeptides (protein fusions). They can be classified into three groups. The group I SxxK d,d-acyltransferases are ubiquitous in the bacterial world. They invariably bear the motifs SxxK, SxN(D), and KT(S)G. Anchored in the plasma membrane with the bulk of the polypeptide chain exposed on the outer face of it, they are implicated in the synthesis of wall peptidoglycans of the most frequently encountered (4→3) type. They are inactivated by penicillin and other β-lactam antibiotics acting as suicide carbonyl donors in the form of penicillin-binding proteins (PBPs). They are components of a morphogenetic apparatus which, as a whole, controls multiple parameters such as shape and size and allows the bacterial cells to enlarge and duplicate their particular pattern. Class A PBP fusions comprise a glycosyltransferase module fused to an SxxK acyltransferase of class A. Class B PBP fusions comprise a linker, i.e., protein recognition, module fused to an SxxK acyltransferase of class B. They ensure the remodeling of the (4→3) peptidoglycans in a cell cycle-dependent manner. The free-standing PBPs hydrolyze d,d peptide bonds. The group II SxxK acyltransferases frequently have a partially modified bar code, but the SxxK motif is invariant. They react with penicillin in various ways and illustrate the great plasticity of the catalytic centers. The secreted free-standing PBPs, the serine β-lactamases, and the penicillin sensors of several penicillin sensory transducers help the d,d-acyltransferases of group I escape penicillin action. The group III SxxK acyltransferases are indistinguishable from the PBP fusion proteins of group I in motifs and membrane topology, but they resist penicillin. They are referred to as Penr protein fusions. Plausible hypotheses are put forward on the roles that the Penr protein fusions, acting as l,d-acyltransferases, may play in the (3→3) peptidoglycan-synthesizing molecular machines. Shifting the wall peptidoglycan from the (4→3) type to the (3→3) type could help Mycobacterium tuberculosis and Mycobacterium leprae survive by making them penicillin resistant.Keywords
This publication has 271 references indexed in Scilit:
- Complete genome sequence of Caulobacter crescentusProceedings of the National Academy of Sciences, 2001
- Massive gene decay in the leprosy bacillusNature, 2001
- The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance 1 1Edited by R. HuberJournal of Molecular Biology, 2000
- Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequenceNature, 1998
- Mutational Analysis of Potential Zinc-Binding Residues in the Active Site of the Enterococcal d-Ala-d-Ala Dipeptidase VanXBiochemistry, 1997
- The penicillin sensory transducer, BlaR, involved in the inducibility of β‐lactamase synthesis in Bacillus licheniformis is embedded in the plasma membrane via a four‐α‐helix bundleMolecular Microbiology, 1997
- The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesisJournal of Molecular Biology, 1994
- Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeaeNature, 1988
- Second lytic target of β‐lactam compounds that have a terminal d‐amino acid residueEuropean Journal of Biochemistry, 1985
- Occurrence of D-alanyl-(D)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of MycobacteriaBiochemistry, 1974