Mechanisms of chain initiation in the biosynthesis of connective tissue polysaccharides.

  • 1 February 1985
    • journal article
    • Vol. 44 (2), 373-80
Abstract
Carbohydrate-protein linkages of three types are found in the connective tissue proteoglycans; these linkages involve the following monosaccharide-amino acid pairs: xylose-serine; N-acetylglucosamine-asparagine; and N-acetylgalactosamine-threonine (or serine). The biosynthesis of carbohydrate groups containing linkages of the latter two types presumably occurs by the same pathways that have been well established for many glycoproteins, but details of these processes as they pertain to proteoglycans are not yet known. Initiation of polysaccharide chains linked by the xylose-serine linkage takes place by direct transfer of xylose from UDP-xylose to the hydroxyl groups of specific serine residues in the core proteins of the respective proteoglycans, and the xylosyltransferase catalyzing these reactions has been detected in the rough endoplasmic reticulum of embryonic chick chondrocytes. Although the completed or nascent core proteins are the natural substrates for xylose transfer in the intracellular assembly of proteoglycans, a survey of potential exogenous substrates has shown that small peptides containing alternating serine and glycine residues may also serve as acceptors in this reaction. Nevertheless, larger substrates are preferred, such as chondroitin sulfate proteoglycan, which has been deglycosylated by Smith degradation or HF treatment, or silk fibroin, which contains Ser-Gly pairs. In contrast to the sulfated polysaccharides, which are synthesized by carbohydrate transfer to protein in the endoplasmic reticulum and the Golgi apparatus, hyaluronic acid is formed in the plasma membrane by a different mechanism. The reaction by which chains are initiated is not yet known, but recent work by Prehm suggests that this process occurs either by transfer of the glucuronosyl component of UDP-glucuronic acid to UDP-N-acetylglucosamine or by the converse reaction, i.e., transfer of the N-acetylglucosaminyl unit of UDP-N-acetylglucosamine to UDP-glucuronic acid.