Electrochemical properties of vanadium oxide aerogels

Abstract
Aerogels are well-known mesoporous materials whose low density and high surface area result from synthesis methods that enable the pore solvent to be removed without collapsing the solid network phase. The interconnected porosity provides both molecular accessibility and rapid mass transport via diffusion, and for these reasons transition metal oxide aerogels are gaining increased interest as intercalation electrode materials for lithium-ion batteries. The present paper reviews recent research on vanadium oxide aerogels that has been directed at establishing both their fundamental properties and unique ways of incorporating these materials into electrode structures. The experiments used to determine the fundamental electrochemical properties of vanadium oxide aerogels involve the use of a sticky-carbon electrode that is designed to both hold the material and serve as the current collector. The results show that these materials combine elements of both capacitor and battery behavior as the material...