An analysis and optimization of elliptical RF probes used in magnetic resonance imaging

Abstract
In magnetic resonance imaging of the entire body, it is often desirable to use an elliptical RF probe, rather than a circular one. As an ellipse more closely conforms to the anatomical cross section of the human thorax and head, better filling factors and therefore improved signal-to-noise ratios may be achieved by the use of elliptical RF coils. The probe is usually of bird-cage type, but the rungs are of finite width due to the high-frequency signals involved. This paper presents a method for computing the magnetic fields produced inside elliptical probes, and the current distributions on the rungs. A slotted shield is assumed to surround the probe, and its influence on field homogeneity is studied. In particular, the currents in a 16-runged unshielded elliptical coil of practical interest were determined optimally in one case, using simulated annealing to optimize the homogeneity of the magnetic field within the probe. The effects of a segmented shield of both elliptical and circular cross section on this coil are discussed, and the results are confirmed by experiment.