Characterization of picosecond GaAs metal-semiconductor-metal photodetectors

Abstract
Interdigitated GaAs metalsemiconductormetal Schottky photodiodes have been studied experimentally and theoretically. The time evolution of the response current has been measured by means of photoconductive and electrooptic sampling with a time resolution of 0. 8 and 0. 3 ps respectively. The response current to a 70 fs laser pulse reaches maximum within 25 p5 then shows a fast decay of about 10 ps followed by a slower one. Selfconsistent twodimensional Monte Carlo particle simulation predicts that the former is due to electrons the latter to holes. With a sufficiently strong electric field the two species of carriers get separated. With increased light intensity a screened plasma forms that vanishes only through recombination which takes of the order of nanoseconds.