The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores ofRhodopseudomonas capsulata at different redox potentials

Abstract
(1) Inhibition of cyclic phosphorylation in chromatophores ofRhodopseudomonas capsulata by antimycin A can be fully reversed by artificial redox mediators, provided the ambient redox potential is maintained around 200 mV. The redox mediator need not be a hydrogen carrier in its reduced form, N-methyl-phenazonium methosulfate and N,N,N′,N′-tetramethyl-p-phenylenediamine being equally effective. However, the mediator needs to be lipophilic. Endogenous cyclic phosphorylation is fastest around 130 mV. A shift to 200 mV can also be observed if high concentrations of artificial redox mediator are present in the absence of antimycin A. (2) ATPase activity ofRhodopseudomonas capsulata, in the light as well as in the dark, activated or not activated by inorganic phosphate, can also be stimulated by N-methylphenazonium methosulfate. This stimulation is highest at redox potentials between 60 to 80 mV and is sensitive to antimycin A. In this case N,N,N′,N′-tetramethyl-p-phenylenediamine is much less effective.

This publication has 38 references indexed in Scilit: