Discrete Nanostructures of Quantum Dots/Au with DNA

Abstract
Nanostructures of colloidal CdSe/ZnS core/shell quantum dots (QDs) surrounded by a discrete number of Au nanoparticles were generated via DNA hybridization and purified by gel electrophoresis. Statistics from TEM analysis showed a high yield of designed structures. The distance between Au particles and QD, the number of Au around the central QD, and the size of Au and QD can be adjusted. Rationally designed structures such as these hold great promise for researching the physical interactions between semiconductor and Au nanoparticles and for developing more efficient nanoprobes.