A Potent Anti-HIV Immunotoxin Blocks Spreading Infection by Primary HIV Type 1 Isolates in Multiple Cell Types

Abstract
Although several immunotoxins that selectively kill HIV-1-infected cells have been described, their clinical utility is limited by low potency against spreading viral infection. We show here that changing the carboxyterminal sequence of an anti-HIV-1 envelope immunotoxin to the consensus endoplasmic reticulum retention sequence KDEL substantially improves its ability to block infection of peripheral blood mononuclear cells by primary HIV-1 isolates without increasing nonspecific toxicity. Polychromatic flow cytometry of peripheral blood mononuclear cells (PBMC) infected with an HIV-1-GFP reporter virus demonstrated that the improved immunotoxin is active against a variety of primary cell types including memory T cells, NK-T cells, and monocyte/macrophages. The subnanomolar potency of this agent suggests that it could be clinically useful either as an adjuvant to highly active antiretroviral therapy (HAART) in drug-resistant patients or to reduce the reservoir of latently infected cells that is implicated in HIV-1 persistence.