Abstract
Rabbit ventricle was fixed in glutaraldehyde without injury (control) or was injured before fixation, presumably causing electrical uncoupling of the gap junctions. All tissue was then processed for freeze-fracture. Replicas of control gap junctions exhibited irregular packing of the P-face particles and E-face pits. Average center-to-center spacing of the particles was 10.5 nm. Tissue fixed 1-5 min after injury showed clumping of gap junctional particles and pits. Within the clumps, the particles and pits were hexagonally packed and the center-to-center spacing of the particles averaged 9.5 nm. In tissue fixed 15-30 min after injury, the clumps of gap junctional particles had coalesced into a homogeneous structure in most junctions. The packing of the particles and pits was hexagonal and the spacing of the particles averaged 9.5 nm. A few pieces of rabbit atrium were frozen without prior fixation or cryoprotection to try to assess the effect of glutaraldehyde fixation on gap junction structure. In this tissue the gap junctional particles were irregularly packed and their spacing averaged 10.0 nm.