Importance of Posttraumatic Hypothermia and Hyperthermia on the Inflammatory Response after Fluid Percussion Brain Injury: Biochemical and Immunocytochemical Studies
Open Access
- 1 March 2000
- journal article
- research article
- Published by SAGE Publications in Journal of Cerebral Blood Flow & Metabolism
- Vol. 20 (3), 531-542
- https://doi.org/10.1097/00004647-200003000-00012
Abstract
The purpose of this study was to investigate: 1) the temporal and regional profile of polymorphonuclear leukocyte (PMNL) infiltration after moderate traumatic brain injury using the parasagittal fluid percussion model and 2) the effects of posttraumatic hypothermia (30°C) and hyperthermia (39°C) on the acute and subacute inflammatory response. We hypothesized that posttraumatic hypothermia would reduce the degree of PMNL accumulation whereas hyperthermia would exacerbate this response to injury. In the first series of experiments we quantitated the temporal profile of altered myeloperoxidase activity under normothermic (37°C) conditions (n = 20). The rats were allowed to survive for 3 hours, 24 hours, 3 days, or 7 days after trauma, and brains were dissected into cortical and subcortical regions ipsilateral and contralateral to injury. Additional animals were perfused and fixed for the immunocytochemical visualization of myeloperoxidase (n = 15). In the second series of experiments, rats (n = 25) were killed 3 hours or 3 days after the 3-hour monitoring period of normothermia (36.5°C), hypothermia (30°C), or hyperthemia (39°C) (n = 4 to 5 per group), and myeloperoxidase activity was again quantitated. In normothermic rats, the enzymatic activity of myeloperoxidase was significantly increased (P < 0.05) at 3 hours within the anterior cortical segment (213.97 ± 56.2 versus control 65.5 ± 52.3 U/g of wet tissue; mean ± SD) and posterior (injured) cortical and subcortical segments compared to shamoperated rats (305.76 ± 27.8 and 258.67 ± 101.4 U/g of wet tissue versus control 62.8 ± 24.8 and 37.28 ± 35.6 U/g of wet tissue; P < 0.0001, P < 0.05, respectively). At 24 hours and 7-days after trauma only the posterior cortical region (P < 0.005, P < 0.05, respectively) exhibited increased myeloperoxidase activity. However, 3 days after trauma, myeloperoxidase activity was also significantly increased within the anterior cortical segment (P < 0.05) and in posterior cortical and subcortical regions compared to sham-operated cortex (P < 0.0001, P < 0.05, respectively). Immunocytochemical analysis of myeloperoxidase reactivity at 3 hours, 24 hours, 3- and 7-days demonstrated large numbers of immunoreactive leukocytes within and associated with blood vessels, damaged tissues, and subarachnoid spaces. Posttraumatic hypothermia and hyperthermia had significant effects on myeloperoxidase activity at both 3 hours and 3 days after traumatic brain injury. Posttraumatic hypothermia reduced myeloperoxidase activity in the injured and noninjured cortical and subcortical segments compared to normothermic values (P < 0.05). In contrast, posttraumatic hyperthermia significantly elevated myeloperoxidase activity in the posterior cortical region compared to normothermic values at both 3 hours and 3 days (473.5 ± 258.4 and 100.11 ± 27.58 U/g of wet tissue, respectively, P < 0.05 versus controls). These results indicate that posttraumatic hypothermia decreases early and more prolonged myeloperoxidase activation whereas hyperthermia increases myeloperoxidase activity. Temperature-dependent alterations in PMNL accumulation appear to be a potential mechanism by which posttraumatic temperature manipulations may influence traumatic outcome.Keywords
This publication has 91 references indexed in Scilit:
- Early White Blood Cell Dynamics after Traumatic Brain Injury: Effects on the Cerebral MicrocirculationJournal of Cerebral Blood Flow & Metabolism, 1997
- Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion.Stroke, 1994
- Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats.Stroke, 1994
- Cell adhesion in the immune systemImmunology Today, 1993
- Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke.Stroke, 1992
- Effects of normothermic versus mild hyperthermic forebrain ischemia in rats.Stroke, 1990
- Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain.Stroke, 1989
- Blood components contribute to rise in gerbil brain levels of leukotriene-like immunoreactivity after ischemia and reperfusion.Stroke, 1988
- Platelet activating factor receptor blockade enhances recovery after multifocal brain ischemiaLife Sciences, 1987
- Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period.Stroke, 1986