ELECTRON MICROSCOPE OBSERVATIONS ON SYNAPTIC VESICLES IN SYNAPSES OF THE RETINAL RODS AND CONES

Abstract
The submicroscopic organization of the rod and cone synapses of the albino rabbit has been investigated with the use of the electron microscope. The most common rod synapse consists of an enlarged expansion of the rod fiber (the so called spherule) into which the dendritic postsynaptic fiber of the bipolar cell penetrates and digitates. The membrane surrounding the terminal consists of a double layer, the external of which is interpreted as belonging to the intervening glial cells. The synaptic membrane has a pre- and a postsynaptic layer with a total thickness of 180 to 300 A. The presynaptic layer is frequently denser and is intimately associated with the adjacent synaptic vesicles. The synaptic membrane shows processes constituted by foldings of the presynaptic layer. The entire spherule is filled with synaptic vesicles varying in diameter between 200 and 650 A with a mean of 386 A. In addition, the spherule contains a few large vacuoles near the rod fiber, interpreted as endoplasmic reticulum, and a matrix in which with high resolution a fine filamentous material can be observed. The postsynaptic fiber is homogeneous and usually does not show synaptic vesicles.

This publication has 6 references indexed in Scilit: