Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer.

  • 15 March 1997
    • journal article
    • clinical trial
    • Vol. 57 (6), 1098-102
Abstract
Folate derivatives are important in experimental colorectal carcinogenesis; low folate intake, particularly with substantial alcohol intake, is associated with increased risk. The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate, required for purine and thymidine syntheses, to 5-methyltetrahydrofolate, the primary circulatory form of folate necessary for methionine synthesis. A common mutation (677C-->T) in MTHFR reduces enzyme activity, leading to lower levels of 5-methyltetrahydrofolate. To evaluate the role of folate metabolism in human carcinogenesis, we examined the associations of MTHFR mutation, plasma folate levels, and their interaction with risk of colon cancer. We also examined the interaction between genotype and alcohol intake. We used a nested case-control design within the Physicians' Health Study. Participants were ages 40-84 at baseline when alcohol intake was ascertained and blood samples were drawn. During 12 years of follow-up, we identified 202 colorectal cancer cases and matched them to 326 cancer-free controls by age and smoking status. We genotyped for the MTHFR polymorphism and measured plasma folate levels. Men with the homozygous mutation (15% in controls) had half the risk of colorectal cancer [odds ratio (OR), 0.49; 95% confidence interval (CI), 0.27-0.87] compared with the homozygous normal or heterozygous genotypes. Overall, we observed a marginal significant increased risk of colorectal cancer (OR, 1.78; 95% CI, 0.93-3.42) among those whose plasma folate levels indicated deficiency (IT mutation in MTHFR reduces colon cancer risk, perhaps by increasing 5,10-methylenetetrahydrofolate levels for DNA synthesis, but that low folate intake or high alcohol consumption may negate some of the protective effect.