Analysis of aberrations in public health surveillance data: Estimating variances on correlated samples

Abstract
The detection of unusual patterns in health data presents an important challenge to health workers interested in early identification of epidemics or important risk factors. A useful procedure for detection of aberrations is the ratio of a current report to some historic baseline. This work addresses the problem of finding the variance of such a ratio when the surveillance reports are correlated. Results show that, when estimating this variance or the variance of the sample mean from a series of observations with an estimated correlation structure, bootstrap and jackknife estimates may be overly optimistic. The delta method or a classical method may be more useful when such model dependence is inappropriate.

This publication has 10 references indexed in Scilit: