Abstract
Five Angus x Simmental steers (average BW 259 kg) cannulated in the rumen, proximal duodenum, and terminal ileum were fed five diets in a 5 x 5 Latin square design. Experimental periods were 14 d in length, with 10 d of diet adaptation and 4 d of sample collection. The basal diet contained (percentage of diet DM) ammoniated corn cobs (50%), alfalfa hay (22%), cornstarch grits (13%), corn (6.7%), cane molasses (5%), and urea (1.25%). Three canola seed-containing diets and a diet containing Ca salts of long-chain fatty acids (Ca-LCFA) were formulated by replacing cornstarch grits from the basal diet with the test feedstuffs. Whole canola seed untreated, crushed, or treated with a caustic alkaline solution and an oxidant were included at 10% of diet DM. The Ca-LCFA diet contained (percentage of diet DM) canola meal (5%) and Megalac (5%). Diets containing untreated, crushed, and treated canola seed and Ca-LCFA contained, on average, 5.6% more total fatty acids than the basal diet. Steers were fed 5.3 kg DM/d (2.05% of initial BW) in 12 equal portions (every 2 h). Ruminal fermentation characteristics and digestibilities of OM, GE, N, NDF, and ADF were unaffected (P > .05) by diet. Biohydrogenation of total 18-carbon unsaturated fatty acids was greater (P < .05) for steers fed the crushed canola seed-containing diet (72.0%) than for steers fed the untreated (27.9%) and treated (38.6%) canola seed-containing diets. Digestibility of total 18-carbon fatty acids in the small intestine was greater for steers fed the crushed canola seed (58.9% of duodenal flow) rather than the untreated canola seed (28.4% of duodenal flow) and intermediate for steers fed the treated canola seed (47.0% of duodenal flow). Chemical treatment of whole canola seed may be a viable method for the postruminal delivery of intestinally available unsaturated fatty acids to ruminants. Copyright © . .