Abstract
Cocaine produces several behavioral effects, most notably locomotor stimulation. Biochemically, cocaine is known to inhibit reuptake at the three monoamine transporter sites, and may have highest affinity at the serotonin transporter. Serotonin augmentation has been associated with decreases in behavioral activity, but cocaine has not been reported to produce behavioral depressant effects except at high doses which cause stereotypy and disruption of behavior. This study examined the effects of relatively low doses of cocaine, in the range of 0.1–10 mg/kg, on locomotor activity in C57BL/6J and DBA/2J mice. A biphasic dose-response curve was seen for both strains. At the lowest doses, activity was depressed. As the dose of cocaine increased, activity returned to baseline, and at the highest doses, increases in locomotor activity were found. DBA/2J mice were depressed at a lower dose of cocaine than were C57BL/6J mice; however, C57BL/6J mice showed locomotor depression over a broader range of doses. Activity was maximally depressed at 0.1 mg/kg for DBA/2J mice, and maximally depressed at 0.3 mg/kg for C57BL/6J mice. Thus, low doses of cocaine are shown to produce significant decreases in locomotor activity in two strains of mice. It is postulated that these low doses of cocaine which depress locomotor activity do so via inhibition of serotonin uptake, resulting in potentiation of serotonergic activity.