Model for ferromagnetic nanograins with discrete electronic states

Abstract
We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain’s discrete energy levels. We compare the model’s predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.
All Related Versions