Tumor Cell and Endothelial Cell Therapy of Oral Cancer by Dual Tyrosine Kinase Receptor Blockade

Abstract
Expression of the epidermal growth factor (EGF) and activation of its receptor (EGFR), a tyrosine kinase, are associated with progressive growth of head and neck cancer. Expression of the vascular endothelial growth factor (VEGF) is associated with angiogenesis and progressive growth of tumor. The tyrosine kinase inhibitor NVP-AEE788 (AEE788) blocks the EGF and VEGF signaling pathways. We examined the effects of AEE788 administered alone, or with paclitaxel (Taxol), on the progression of human head and neck cancer implanted orthotopically into nude mice. Cells of two different human oral cancer lines, JMAR and MDA1986, were injected into the tongues of nude mice. Mice with established tumors were randomized to receive three times per week oral AEE788, once weekly injected paclitaxel, AEE788 plus paclitaxel, or placebo. Oral tumors were resected at necropsy. Kinase activity, cell proliferation, apoptosis, and mean vessel density were determined by immunohistochemical immunofluorescent staining. AEE788 inhibited cell growth, induced apoptosis, and reduced the phosphorylation of EGFR, VEGFR-2, AKT, and mitogen-activated protein kinase in both cell lines. Mice treated with AEE788 and AEE788 plus paclitaxel had decreased microvessel density, decreased proliferative index, and increased apoptosis. Hence, AEE788 inhibited tumor vascularization and growth and prolonged survival. Inhibition of EGFR and VEGFR phosphorylation by AEE788 effectively inhibits cellular proliferation of squamous cell carcinoma of the head and neck, induces apoptosis of tumor endothelial cells and tumor cells, and is well tolerated in mice. These data recommend the consideration of patients with head and neck cancer for inclusion in clinical trials of AEE788.