Dynein binds to and crossbridges cytoplasmic microtubules.

Abstract
Dynein isolated from Chlamydomonas reinhardtii flagellar axonemes binds to microtubules assembled in vitro from 6S brain tubulin dimers. The dynein arms bind periodically along the length of the microtubules with a center-to-center spacing of 24 nm, equal to the periodicity of dynein arms on intact axonemes. The arms project from the in vitro assembled microtubules at an angle of approximately 55.degree., thereby defining microtubule polarity. Dynein cosediments with microtubules through a sucrose gradient, as demonstrated by EM, gel electrophoresis, and ATPase analysis. In addition, dynein induces crossbridging between adjacent microtubules. Darkfield microscopy reveals that microtubules containing dynein are aggregated into large bundles; EM indicates that microtubules of the same polarity are crossbridged by a regular array of arms. Viewed by darkfield microscopy, addition of ATP to crossbridged microtubules causes their disaggregation; EM shows that the majority of these microtubules are no longer crossbridged. These observations are applicable to the determination of microtubule polarity and directionality of microtubule assembly in situ and suggest a role for dynein in cytoplasmic microtubule-based cellular movements.