An incommensurate-commensurate phase transformation in antiferroelectric tin-modified lead zirconate titanate

Abstract
Antiferroelectric tin-modified lead zirconate titanate ceramics (PZST), with 42 at. % Sn and 4 at. % Ti, were studied by hot- and cold-stage transmission electron microscopy and selected area electron diffraction techniques. The previously reported tetragonal antiferroelectric state is shown to be an incommensurate orthohombic state. Observations revealed the existence of incommensurate 1/x 〈110〉 superlattice reflections below the temperature of the dielectric maximum. The modulation wavelength for this incommensurate structure was found to be metastably locked-in near and below room temperature. An incommensurate-commensurate orthorhombic antiferroelectric transformation was then observed at lower temperatures. However, an intermediate condition was observed over a relatively wide temperature range which was characterized by an intergrowth of 〈110〉 structural modulations, which was strongly diffuse along the 〈110〉. These structural observations were correlated with dispersion in the dielectric properties in the same temperature range. No previous reports of an incommensurate orthorhombic antiferroelectric state or an incommensurate-commensurate orthorhombic antiferroelectric transformation are known to exist.