Biomass-Gasifier Steam-Injected Gas Turbine Cogeneration

Abstract
Steam injection for power and efficiency augmentation in aeroderivative gas turbines is now commercially established for natural gas-fired cogeneration. Steam-injected gas turbines fired with coal and biomass are being developed. In terms of efficiency, capital cost, and commercial viability, the most promising way to fuel steam-injected gas turbines with biomass is via the biomass-integrated gasifier/steam-injected gas turbine (BIG/STIG). The R&D effort required to commercialize the BIG/STIG is modest because it can build on extensive previous coal-integrated gasifier/gas turbine development efforts. An economic analysis of BIG/STIG cogeneration is presented here for cane sugar factories, where sugar cane residues would be the fuel. A BIG/STIG investment would be attractive for sugar producers, who could sell large quantities of electricity, or for the local electric utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG capacity, and there are many potential applications in the forest products and other biomass-based industries.