Abstract
Using computational methods to model neural recordings and behavioral data, the authors find that reinforcement learning rules, combined with a standard model of decision-making, can explain a range of experimentally observed phenomena in perceptual learning. We recently showed that improved perceptual performance on a visual motion direction–discrimination task corresponds to changes in how an unmodified sensory representation in the brain is interpreted to form a decision that guides behavior. Here we found that these changes can be accounted for using a reinforcement-learning rule to shape functional connectivity between the sensory and decision neurons. We modeled performance on the basis of the readout of simulated responses of direction-selective sensory neurons in the middle temporal area (MT) of monkey cortex. A reward prediction error guided changes in connections between these sensory neurons and the decision process, first establishing the association between motion direction and response direction, and then gradually improving perceptual sensitivity by selectively strengthening the connections from the most sensitive neurons in the sensory population. The results suggest a common, feedback-driven mechanism for some forms of associative and perceptual learning.