Structure and assembly of protocatechuate 3,4-dioxygenase

Abstract
Dioxygenases catalyse the cleavage of molecular oxygen with subsequent incorporation of both oxygen atoms into organic substrates. Some of the best-studied dioxygenases have been isolated from bacteria where they catalyse the critical ring-opening step in the biodegradation of aromatic compounds. These bacterial enzymes generally contain nonheme ferric iron as the sole cofactor. Protocatechuate 3,4-dioxygenase (3,4-PCD) was one of the first such enzymes recognized and catalyses the intradiol cleavage of protocatechuic acid by oxygen to produce beta-carboxy-cis,cis-muconic acid. Previous studies have shown that the 3,4-PCD found in Pseudomonas aeruginosa is an oligomer with a relative molecular mass (Mr) of 587,000 (587K) containing 12 copies each of alpha (22.3K) and beta (26.6K) subunits. The X-ray structure determination of 3,4-PCD reveals the catalytic iron environment required for oxygenolytic cleavage of aromatic rings and also provides a novel holoenzyme assembly with cubic 23(T) symmetry and first examples of mixed beta-barrel domains.