Evidence for in vivo upregulation of the intestinal vitamin D receptor during dietary calcium restriction in the rat.
Open Access
- 1 July 1988
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 82 (1), 218-224
- https://doi.org/10.1172/jci113574
Abstract
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] increases intestinal calcium absorption through events that include binding of 1,25(OH)2D3 to the intracellular vitamin D receptor. In vitro studies using mammalian cell cultures reveal an increase in vitamin D receptor content after exposure to 1,25(OH)2D3. To test the hypothesis that 1,25(OH)2D3 increases enterocyte vitamin D receptor content in vivo, male rats were fed either a normal calcium diet (NCD, 1.2% Ca) or low calcium diet (LCD, 0.002% Ca). After 21 d LCD increased serum 1,25(OH)2D3 levels (27 +/- 3 vs. 181 +/- 17 pg/ml, P less than 0.001) and increased transepithelial mucosal to serosal calcium fluxes (Jms) across duodenum (65 +/- 21 vs. 204 +/- 47 nmol/cm2.h, NCD vs. LCD, P less than 0.01) and jejunum (23 +/- 3 vs. 46 +/- 4, P less than 0.007). No change in serosal to mucosal calcium fluxes (Jsm) were observed. LCD increased 1,25(OH)2D3 receptor number threefold in duodenum (32.9 +/- 6.7 vs. 98.7 +/- 13.7 fmol 1,25(OH)2D3/mg protein) and jejunum (34.1 +/- 9.5 vs. 84.9 +/- 7.7) without a change in the receptor affinity for 1,25(OH)2D3 (Kd is 0.17 +/- 0.06 vs. 0.21 +/- 0.02 nM for NCD and LCD duodenum, respectively). Duodenal polyadenylated vitamin D receptor mRNA determined by Northern blot analysis did not increase appreciably during LCD, suggesting that upregulation in vivo may not be due primarily to increased receptor synthesis. The results of this study indicate that under physiologic conditions as during chronic dietary calcium restriction, increased intestinal vitamin D receptor content accompanies increased calcium active transport. Upregulation of the vitamin D receptor by 1,25(OH)2D3 may result primarily from posttranslational processes that decrease degradation of the receptor with increased receptor synthesis responsible for a negligible portion of the accumulation.This publication has 34 references indexed in Scilit:
- Evidence for calcium-dependent control of 1,25-dihydroxyvitamin D3 production by rat kidney proximal tubules.Journal of Biological Chemistry, 1986
- Specific cytosol-binding protein for 1,25-dihydroxyvitamin D3 in rat intestine.Journal of Biological Chemistry, 1977
- Cytoplasmic and nuclear binding components for 1alpha25-dihydroxyvitamin D3 in chick parathyroid glands.Proceedings of the National Academy of Sciences, 1975
- Specific binding of 1alpha,25-dihydroxycholecalciferol to nuclear components of chick intestine.Journal of Biological Chemistry, 1975
- Effects of 1,25-Dihydroxycholecalciferol on Intestinal Calcium Transport in Cortisone-Treated RatsJournal of Clinical Investigation, 1973
- Purification of Biologically Active Globin Messenger RNA by Chromatography on Oligothymidylic acid-CelluloseProceedings of the National Academy of Sciences, 1972
- Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit currentAmerican Journal of Physiology-Legacy Content, 1971
- Apparent Increase in Carrier Affinity for Intestinal Calcium Transport following Dietary Calcium RestrictionJournal of Biological Chemistry, 1970
- CHROMOSOMAL RECEPTOR FOR A VITAMIN D METABOLITEProceedings of the National Academy of Sciences, 1969
- Ion Transport in Isolated Rabbit IleumThe Journal of general physiology, 1964