Self-induced separation

Abstract
A rational theory is developed to explain the initial pressure rise and consequent separation of a laminar boundary layer when it interacts with a moderately strong shock. In this theory, which is firmly based on the linearized theory of Lighthill (1953), the region of interest is divided into three parts: the major part of the boundary layer, which is shown to change under largely inviscid forces, the supersonic main stream just adjacent to the boundary layer in which the pressure variation is small; and a region close to the wall, on boundary-layer scale, in which the relative variation of the velocity is large but is controlled by the incompressible boundary-layer equations, together with novel boundary conditions. We find that the first two parts can be handled in a straightforward way and the problem of self-induced separation reduces, in its essentials, to the solution of a single problem in the theory of incompressible boundary layers. It is found that this problem has three solutions, one of which corresponds to undisturbed flow and another describes a boundary layer which, spontaneously, generates an adverse pressure gradient and a decreasing skin friction which eventually vanishes and then downstream a reversed flow is set up. The third solution generates a favourable pressure gradient and is not relevant to the present study. Although there has hitherto been no valid numerical method of integrating a boundary layer with reversed flow, we find that an ad hoc method seems to lead to a stable solution which has a number of the properties to be expected of a separated boundary layer. Comparison with experiment gives qualitatively good agreement, but quantitatively errors of the order of 20% are found. It is believed that these errors arise because the Reynolds numbers at which the experiments were carried out are too small.

This publication has 3 references indexed in Scilit: