Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex
- 1 October 1997
- journal article
- Published by MIT Press in Journal of Cognitive Neuroscience
- Vol. 9 (5), 648-663
- https://doi.org/10.1162/jocn.1997.9.5.648
Abstract
Nine previous positron emission tomography (PET) studies of human visual information processing were reanalyzed to determine the consistency across experiments of blood flow decreases during active tasks relative to passive viewing of the same stimulus array. Areas showing consistent decreases during active tasks included posterior cingulate/precuneous (Brodmann area, BA 31/7), left (BAS 40 and 39/19) and right (BA 40) inferior parietal cortex, left dorsolateral frontal cortex (BA S), left lateral inferior frontal cortex (BA 10/47), left inferior temporal gyrus @A 20), a strip of medial frontal regions running along a dorsal-ventral axis (BAs 8, 9, 10, and 32), and the right amygdala. Experiments involving language-related processes tended to show larger decreases than nonlanguage experiments. This trend mainly reflected blood flow increases at certain areas in the passive conditions of the language experiments (relative to a fixation control in which no task stimulus was present) and slight blood flow decreases in the passive conditions of the nonlanguage experiments. When the active tasks were referenced to the fixation condition, the overall size of blood flow decreases in language and nonlanguage tasks were the same, but differences were found across cortical areas. Decreases were more pronounced in the posterior cingulate/precuneous (BAS 31/7) and right inferior parietal cortex (BA 40) during language-related tasks and more pronounced in left inferior frontal cortex (BA 10/47) during nonlanguage tasks. Blood flow decreases did not generally show significant differences across the active task states within an experiment, but a verb-generation task produced larger decreases than a read task in right and left inferior parietal lobe (BA 40) and the posterior cingulate/precuneous (BA 31/7), while the read task produced larger decreases in left lateral inferior frontal cortex (BA 10/47). These effects mirrored those found between experiments in the language-nonlanguage comparison. Consistent active minus passive decreases may reflect decreased activity caused by active task processes that generalize over tasks or increased activity caused by passive task processes that are suspended during the active tasks. Increased activity during the passive condition might reflect ongoing processes, such as unconstrained verbally mediated thoughts and monitoring of the external environment, body, and emotional state.Keywords
This publication has 9 references indexed in Scilit:
- Top-down modulation of early sensory cortex.Cerebral Cortex, 1997
- Demonstrating the Implicit Processing of Visually Presented Words and PseudowordsCerebral Cortex, 1996
- Functional anatomical studies of explicit and implicit memory retrieval tasksJournal of Neuroscience, 1995
- Practice-related Changes in Human Brain Functional Anatomy during Nonmotor LearningCerebral Cortex, 1994
- Investigating a network model of word generation with positron emission tomographyProceedings Of The Royal Society B-Biological Sciences, 1991
- Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkeyNeuropsychologia, 1991
- Cerebral Metabolism During Electrically Induced Seizures in ManArchives of Neurology, 1969
- Cerebral Metabolic and Circulatory Responses to Induced Convulsions in AnimalsArchives of Neurology, 1968
- Arterial Pco2 and cerebral hemodynamicsAmerican Journal of Physiology-Legacy Content, 1964