Abstract
Flash-induced absorption changes in the near UV were determined for bacteriorhodopsin and halorhodopsin on a millisecond time scale. The difference spectrum obtained for bacteriorhodopsin was comparable to model difference spectra of tyrosine (aromatic OH deprotonated vs protonated), as found by others. The flash-induced difference spectrum for halorhodopsin, in contrast, resembled a model spectrum opbtained for trans to 13-cis isomerization of retinal in bacteriorhodopsin. A model for chloride translocation by halorhodopsin is presented, in which the retinal isomerization moves positive charges, which in turn modulate the affinity of a site to chloride.